医療・環境オゾン研究 増刊3号 2007

環境分野におけるオゾン利用の実際

日本医療・環境オゾン研究会

JAPAN RESEARCH ASSOCIATION FOR THE MEDICAL & HYGIENIC USE OF OZONE

第1章 オゾン利用の基礎

 オゾン発生器 	
 1.1. 放電式オゾン発生器······ 	1
1.1.1. 無声放電式オゾン発生器	• 1
1.1.2. 沿面放電式オゾン発生器	3
 1.1.3. その他の放電式オゾン発生器	4
1.2. 水の電気分解によるオゾン製造方法(電解式)	5
2. オゾンの理化学的性状	
2.1. はじめに	12
2.2. オゾンとは	12
2.3. オゾン濃度の表示	12
2.4. オゾンの発生	13
2.5. オゾンの分解	• 13
2.6. オゾンの物理的性質	• 15
2.6.1. オゾンの構造	· 15
2.6.2. オゾンの分光学的性質	• 15
2.6.3. オゾンの水への溶解	• 16
2.6.4. オゾンと酸素の物性値	· 17
2.7. オゾンの化学的性質	• 18
2.7.1. オゾンの酸化力	• 18
2.7.2. オゾンの反応速度	• 19
2.7.3. 促進酸化処理 (AOP)	· 20
 2.8. オゾンの生物化学的性質 	
2.9. オゾンの安全基準	
2.10. まとめ	· 22
3. オゾンの測定	
3.1. はじめに	
3.2. ヨウ化カリウム法	· 24
3.2.1. 概要	· 24
3.2.2. オゾン濃度の算出	
3.2.3. 気相環境レベルの分析	
3.3. インジゴ法	
3.3.1. 概要	
3.4. 気相置換紫外線吸収法	
3.4.1. 概要	· 27
3.4.2. 概要とフロー	
3.4.3. 特徴	· 29

i

	3.	5.		ガル	バニセル法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
	3.	6.		オゾ	ン濃度測定に適したサンプリング材料	29
	3.	7.		まと	Ø	30
4			才	ゾン	の化学反応	
	4.	1.		環境	化学物質との反応	31
		4.	1.	1.	有機物との反応	32
		4.	1.	2.	無機物との反応	40
	4.	2.		脱臭	反応	42
		4.	2.	1.	単一悪臭物質とオゾンとの直接反応による脱臭	42
		4.	2.	2.	オゾン酸化副生成物と悪臭物質との反応による脱臭	44
		4.	2.	3.	オゾン酸化により生成した悪臭物質とその除去	44
	4.	3.		農薬	のオゾン分解	45
		4.	3.	1.	はじめに・・・・・	45
		4.	3.	2.	塩素系農薬······	45
		4.	3.	3.	有機リン系農薬	46
		4.	3.	4.	尿素系農薬	47
		4.	3.	5.	オゾン水による農薬分解効果	48
		4.	3.	6.	まとめ・・・・・・	49
5			才	ゾン	殺菌・消毒	
	5.	1.		オゾ	`ンによる殺菌機構	54
		5.	1.	1.	はじめに	54
		5.	1.	2.	オゾンによる殺菌・ウイルス不活性化の原理	54
		5.	1.	3.	オゾンによる殺菌機構	54
					オゾンによるウイルス不活性化機構	
	5.	2.		オゾ	シガスによる殺菌消毒	62
		5.	2.	1.	はじめに	62
		5.	2.	2.	オゾン殺菌のメカニズム・・・・・	62
		5.	2.	3.	オゾンによる微生物殺滅における湿度の影響	63
		5.	2.	4.	オゾンによる微生物殺滅における温度の影響	65
		5.	2.	5.	CT値と殺菌効果	66
		5.	2.	6.	オゾンの浸透性・・・・・	67
		5.	2.	7.	オゾンの滅菌への適用・・・・・	68
		5.	2.	8.	まとめ・・・・・	70
	5.	. 3.		オン	·ン水による殺菌・消毒	72
		5.	3.	1.	はじめに	72
		5.	3.	2.	オゾン水の殺菌効果	72
				3.	他の殺菌剤との比較	
		5.	3.	4.	各種分野におけるオゾン水の利用	
		5.	3.		今後の展望	

.

第2章	オゾンの利用の実際	
1. 医療環	環境におけるオゾンの応用	
1.1. はじ	こめに	79
1.2. 歯利	↓医院における落下細菌の測定	79
1.3. 歯利	4医院内の落下細菌に対するオゾンの効果	80
1.4. まと	: め	82
2. 脱臭~	~の応用	
2.1. 食品	b関連分野	83
2.1.1.	はじめに	83
2.1.2.	悪臭防止法について	84
2.1.3.	臭気の確認方法	84
2.1.4.	店舗(調理)排気臭気の脱臭	86
2.1.5.	大型食品加工工場からの排気脱臭	90
2.1.6.	食品分野における脱臭装置のその他への用途	90
2.1.7.	まとめ・・・・・・	91
2.2. 環境	意関連分野·····	92
2.2.1.	はじめに	92
2.2.2.	一般環境における低濃度オゾンの挙動	92
2.2.3.	低濃度オゾンによる脱臭試験例	93
2.2.4.	環境分野でのオゾン利用例	95
2.2.5.	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	97
	う野におけるオゾンの利用	
3.1. はし	こめに	98
3.2. 工場	易環境におけるオゾン処理	99
3.2.1.	工場環境におけるオゾン処理の概要	99
3. 2. 2.	工場内環境のオゾン殺菌と食品変敗防止効果の検討事例	101
3.3. 原林	オ料のオゾン処理	107
3.3.1.	原材料のオゾン処理の概要	107
	原材料の殺菌、洗浄、変敗防止効果の検討事例	
3.4. 包식	_{表、} 保存時におけるオゾン処理	111
3. 4. 1.	オゾンを利用した無菌充填包装システム	111
3. 4. 2.	包装材料加工工場	113
3.4.3.	水産物のオゾン処理による保存期間の拡大	113
3. 4. 4.	オゾン氷による魚介類の保存	114
3. 4. 5.	野菜の低温貯蔵	115
3.5. まる	とめ・・・・・・	115
4. 製薬分	う野におけるオゾンガス利用	
	じめに	
4.2. 才ン	バンガスの殺菌力	117

iii

.

	4.	3.	作	業	者への安全確保	8
	4.	4.	オ	ゾ	ン燻素	9
		4.4	4.1.		クリーンルーム内のホルマリン代替設備としてのオゾン11	9
		4.4	4.2.		アルコール代替としてのオゾン燻蒸設備	0
		4.4	4.3.	,	小密閉空間のオゾン殺菌12	1
		4. 4	1.4.		ラミナーフローブース内やトンネル施設内のオゾン殺菌制御…12	1
			1.5.		無菌試験アイソレータ設備	
					ゾン性材料	
	4.	6.	ま	と	め	4
5					の貯蔵・保管およびその応用	
					ン貯蔵の目的	
	5.				ン貯蔵の手段と特性	
					吸着貯蔵	
					オゾンガスの圧縮貯蔵13	
					オゾン氷としての貯蔵13	
					フロン類液体への溶解貯蔵	
					オゾンの液化による貯蔵13	
	5.	3.	ま	と	Ø13	5

TJ	承	10	"

第2章

1.節

2.節

3.節

4.節

5.節

付表

* 本書の執筆分担は下記の通りである。

第1章

1.1.項	馬場	誠二
1.2.項	錦	善則
2.節	杉光	英俊
3. 節	竹見	健
4.1.~4.2.項	中室	克彦
4.3.項	扇間	昌規
5.1.項	神力	就子
5.2.項	清水	昌已
5.3.項	塩田岡	间太郎

村上	弘		
小阪	教由		
熊谷	知哉、	内藤	茂三
小阪	教由		
熊谷	知哉		
中室	克彦		